Study on the Inherent Complex Features and Chaos Control of IS-LM Fractional-Order Systems

نویسندگان

  • Junhai Ma
  • Wenbo Ren
  • Xueli Zhan
چکیده

Based on the traditional IS–LM economic theory, which shows the relationship between interest rates and output in the goods and services market and the money market in macroeconomic. We established a four-dimensional IS–LM model involving four variables. With the Caputo fractional calculus theory, we improved it into a fractional order nonlinear model, analyzed the complexity and stability of the fractional order system. The existences conditions of attractors under different order conditions are compared, and obtain the orders when the system reaches a stable state. Have the detail analysis on the dynamic phenomena, such as the strange attractor, sensitivity to initial values through phase diagram and the power spectral. The order changes in two ways: orders changes synchronously or single order changes. The results show regardless of which the order situation is, the economic system will enter into multiple states, such as strong divergence, strange attractor and the convergence, finally, system will enter into the stable state under a certain order; parameter changes have similar effects on the economic system. Therefore, selecting an appropriate order is significant for an economic system, which guarantees a steady development. Furthermore, this paper construct the chaos control to IS–LM fractional-order macroeconomic model by means of linear feedback control method, by calculating and adjusting the feedback coefficient, we make the system return to the convergence state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Sliding-Mode Control Method for Synchronization a Class of Chaotic Fractional-Order Systems with Application in Encryption

In this study, we propose a secure communication scheme based on the synchronization of two identical fractional-order chaotic systems. The fractional-order derivative is in Caputo sense, and for synchronization, we use a robust sliding-mode control scheme. The designed sliding surface is taken simply due to using special technic for fractional-order systems. Also, unlike most manuscripts, the ...

متن کامل

Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems

Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...

متن کامل

Discretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos

This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...

متن کامل

Design of Fractional Order Sliding Mode Controller for Chaos Suppression of Atomic Force Microscope System

A novel nonlinear fractional order sliding mode controller is proposed to control the chaotic atomic force microscope system in presence of uncertainties and disturbances. In the design of the suggested fractional order controller, conformable fractional order derivative is applied. The stability of the scheme is proved by means of the Lyapunov theory based on conformable fractional order deriv...

متن کامل

Chaotic dynamics and synchronization of fractional order PMSM ‎system

‎In this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM) system. The necessary condition for the existence of chaos in the fractional-order PMSM system is deduced and an active controller is developed based on the stability theory for fractional systems. The presented control scheme  is simple and flexible, and it is suitable both fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016